Aivia Software

Multiplexed Cell Detection Recipe

The Multiplexed Cell Detection recipe in Aivia is based on Cellpose, a generalist deep-learning based algorithm for cellular segmentation. This recipe is designed for 2D data.

The recipe detects cell membrane and nuclear membrane using multiple membrane marker channels and a single nucleus marker channel.

Inputs and Outputs

Recipe inputs and outputs for Multiplexed Cell Detection and their descriptions are summarized in the table below.

 

Name

Description

 

Name

Description

Inputs

Deep Learning Model

(Optional) Select a deep learning model to apply before this recipe is applied

Input Nucleus Image

Select the channel which contains the nuclei of cells in the image

Input Cell Membrane Images

Select the membrane marker channels to be used while detecting cells in this recipe

Outputs

Cells

Select the object set to which the results of the detection are outputted. Defaults to creating a new object set

Parameters and Presets

Parameters

Recipe parameters for Multiplexed Cell Detection and their descriptions are summarized in the table below.

Preset Group

Parameter Name

Min Value

Max Value

Description

Preset Group

Parameter Name

Min Value

Max Value

Description

Nucleus Detection

Nucleus Probability Threshold

0

100

Adjusts the sensitivity of nucleus detection. Higher values mean lesser number of detected cells

Nucleus Diameter

0

65535 px

Indicates the estimated diameter of typical cells

Min Nucleus Size

0

65535 px2 or µm2

Filters out and ignores nuclei of size smaller than this parameter

Nucleus Expansion Distance

0

65535

If no cell membrane is detected corresponding to a nucleus, the cell membrane is generated by expanding the nuclear membrane by a distance specified by this parameter

Cell Membrane Detection

Cell Membrane Probability Threshold

0

100

Adjusts the sensitivity of cell membrane detection. Higher values mean lesser number of detected cells membranes


Presets

There are two preset groups in the recipe: Nucleus Detection and Cell Membrane Detection. Each group has three pre-configured parameter groupings to help you get started on the analysis. The default preset values are in the sections to follow.

 

Nucleus Detection

Parameter Name

Small

Medium

Large

Nucleus Probability Threshold

10

10

10

Nucleus Diameter

10 px or µm

20 px or µm

30 px or µm

Min Nucleus Size

20 px2 or µm2

50 px2 or µm2

100 px2 or µm2

Nucleus Expansion Distance

2 px or µm

4 px or µm

6 px or µm



 

Cell Membrane Detection

Parameter Name

Low

Medium

High

Cell Membrane Probability Threshold

10

50

90

 

 

Tutorial (written steps)

Before beginning the tutorial, please download the Multiplexed Cell Detection Demo image. For information on how to select presets or modify parameter values, please refer to the tutorial on how to use the Recipe Console.

  1. Unzip the demo file and load the demo image, “MultiplexedCellDetectionDemo.aivia.tif,” into Aivia.

  2. Set the calibration to 0.325 µm

  3. In the Recipe Console, click on the Recipe selection dropdown menu and select the Multiplexed Cell Detection recipe.

  4. Select the DAPI channel in the dropdown menu for Input Nucleus Image

  5. Select following membrane marker channels in the dropdown menu for Input Cell Membrane Images:

    • CD3

    • CD45

    • CD4

    • CD8

    • GLUT1

    • HLA1

    • NAK

    • PCAD

  6. Select the Small preset for the Nucleus Detection group and the Medium preset for the Cell Membrane Detection group.

  7. Click on the Show Advanced Interface icon to expand the Recipe Console and show parameter options for the recipe.

  8. Modify the parameter values in the recipe as follows while leaving the other values intact:

    • Nucleus Probability Threshold: 30

    • Nucleus Diameter: 5.5 µm

    • Min Nucleus Size: 15 µm2

    • Cell Membrane Probability Threshold: 40

  9. Click the Start button or press the F4 key on your keyboard to begin applying the recipe to the image.

The detected nuclear and cell membrane outlines will be overlaid on the image.

Multiplexed Cell Detection tutorial results
Results at 100% scaling

 

 

Tutorial (videos)

 

 

 

 

Related Articles