Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Aivia Cloud is a full-featured cloud-based image processing and visualization platform. It combines data storage, cloud computing, image processing and remote access. With Aivia Cloud, you can tap into virtually unlimited fast storage and state-of-the-art CPU and GPU hardware from anywhere with an internet connection.

...

Aivia Cloud

...

Image Removed

The Local Library box shows the content of the local computer folder linked to Aivia Cloud. You can adjust this setting by clicking on the Add Local Folder icon. The Cloud Library box shows the content of your folder in the Cloud. You can populate this folder by adding the chosen images from the Local Library to the Cloud Library. There are two ways to move the files between the Libraries  - using Move Selected to Cloud/Local buttons and drag & drop.

The right hand side panel gives you the access to the cloud computed processes. To set up a new job, use the Create Job tab. To monitor the job progress, use the Progress Queue tab.

The pairs of images used to create your own deep learning model (Deep Learning Training) should be distributed between the Raw Input box and the Example box. To introduce a new pair of images to the new job. move your original image from the Cloud Library to the Raw Input box and do similar with your analyzed image - move it from the Cloud Library to the Example box. To move files you can right click on your image to chose the correct option, or drag and drop.

Image Removed

The Training Progress Queue informs you about the progress of your cloud computed job. Uploading indicates the process of moving a file from the local computer to the cloud. Having your files in the Cloud Library reassures this part of the job is instant. Allocating indicates the process of distributing the job tasks to the virtually unlimited CPU and GPU hardware of the cloud.

Image Removed

Using Aivia Cloud

Aivia Cloud creating your own deep learning model starts with two (sets of) images - raw data and example data (aka ground truth).

For image segmentation tasks the ground truth data is composed of your annotations which can be created using one of Aivia's image analysis recipes, using one of the intelligent semi-automatic tools in Aivia or can be imported from other software tools. The raw data are the images as they were acquired by the microscope.

For restoration tasks the ground truth data is a set of data which represents the absolute best quality images (for that set up/experiment) that can be generated. The raw data is composed of images created using imaging parameters which are very desirable (e.g. very low laser power or very fast acquisition) but that can only generate sub-par images.

For prediction tasks the ground truth data is often a set of images which show the localization of a fluorescently tagged protein or organelle. The raw data is often composed of images created using a different imaging modality (e.g. bright-field) which the user wishes to use more routinely for any number of reasons (e.g. cost, photo-toxicity, fluorescence labeling complexity)

Ground Truth Generation

Aivia Cloud 

Important Information

...

has two (2) major components:

  • Deep Learning Processor: desktop client for training and applying deep learning models using Google Cloud Platform
  • Aivia Cloud Web: web-based client for accessing Aivia, powered by Frame

For information about each Aivia Cloud component, click on their respective link above.


Panel

On this page:

Table of Contents



Filter by label (Content by label)
showLabelsfalse
max5
spacescom.atlassian.confluence.content.render.xhtml.model.resource.identifiers.SpaceResourceIdentifier@836
showSpacefalse
sortmodified
reversetrue
typepage
cqllabel in ( "aivia-cloud" , "deep-learning" ) and type = "page" and space = "AW"
labelscharts


Page Properties
hiddentrue


Related issues