Aivia Cloud (launched in parallel with Aivia 8) is a full-featured cloud-based image processing and visualization platform. It combines data storage, cloud computing, image processing and remote access. With Aivia Cloud, you can tap into virtually unlimited fast storage and state-of-the-art CPU and GPU hardware from anywhere with an internet connection.
Interface And Workflow
Aivia Cloud interface is shown below.
The Local Library box shows the content of the local computer folder linked to Aivia Cloud. You can adjust this setting by clicking on the Add Local Folder icon. The Cloud Library box shows the content of your folder in the Cloud. You can populate this folder by adding the chosen images from the Local Library to the Cloud Library. There are two ways to move the files between the Libraries - using Move Selected to Cloud/Local buttons and drag & drop.
...
The pairs of images used to create your own deep learning model (Deep Learning Training) should be distributed between the Raw Input box and the Example box. To introduce a new pair of images to the new job. move your original image from the Cloud Library to the Raw Input box and do similar with your analyzed image - move it from the Cloud Library to the Example box. To move files you can right click on your image to chose the correct option, or drag and drop.
The Training Progress Queue informs you about the progress of your cloud computed job. Uploading indicates the process of moving a file from the local computer to the cloud. Having your files in the Cloud Library reassures this part of the job is instant. Allocating indicates the process of distributing the job tasks to the virtually unlimited CPU and GPU hardware of the cloud.
Using Aivia Cloud
Aivia Cloud creating your own deep learning model starts with two (sets of) images - raw data and example data (aka ground truth).
...
For prediction tasks the ground truth data is often a set of images which show the localization of a fluorescently tagged protein or organelle. The raw data is often composed of images created using a different imaging modality (e.g. bright-field) which the user wishes to use more routinely for any number of reasons (e.g. cost, photo-toxicity, fluorescence labeling complexity)
Ground Truth Generation
Aivia Cloud
Important Information
Aivia Cloud